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Ordering dynamics of the driven lattice-gas model
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~Received 22 January 2001; published 18 July 2001!

The evolution of a two-dimensional driven lattice-gas model is studied on anLx3Ly lattice. Scaling argu-
ments and extensive numerical simulations are used to show that starting from random initial configuration the
model evolves via two stages:~a! an early stage in which alternating stripes of particles and vacancies are
formed along the directiony of the driving field, and~b! a stripe coarsening stage, in which the number of
stripes is reduced and their average width increases. The number of stripes formed at the end of the first stage
is shown to be a function ofLx /Ly

f , with f.0.2. Thus, depending on this parameter, the resulting state could
be either single or multistriped. In the second, stripe coarsening stage, the coarsening time is found to be
proportional toLy , becoming infinitely long in the thermodynamic limit. This implies that the multistriped
state is thermodynamicallystable. The results put previous studies of the model in a more general framework.
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I. INTRODUCTION

Driven diffusive systems have been extensively studied
recent years. They serve as a fruitful framework for study
the statistical mechanics of systems far from thermal equ
rium. Driven by an external field these systems reach
steady state with a non-vanishing current and as such do
satisfy detailed balance. Studies of these models have
vealed many differences between such systems and sys
in thermal equilibrium. For example, several on
dimensional driven diffusive systems with local dynam
exhibit long range order and spontaneous symmetry bre
ing. Such phenomena cannot occur in thermal equilibri
when the interactions are short ranged@1,2#.

Many studies of driven diffusive systems have focused
a driven lattice-gas~Ising! model. The model was introduce
by Katz, Lebowitz, and Spohn@3# and is often referred to a
the ‘‘standard model.’’ Ind52 dimensions the model is de
fined on anLx3Ly lattice. Each of the lattice sitesi, is either
occupied by a particle or is vacant. A macroscopic confi
ration is characterized by a set of occupation numbers$ni%
where ni50,1 represents a vacant or an occupied site,
spectively. Usually the model is studied with an equal nu
ber of occupied and vacant sites. An energyH52(^ i j &ninj
is associated with each configuration. Here the sum is o
^ i j & nearest neighbor sites. The energy represents an at
tive interaction between the particles. Periodic bound
conditions are imposed in both directions. An external dr
is introduced through a fieldE that biases the motion of th
particles in the2y direction. The periodic boundary cond
tions in this direction results in a current of particles throu
the system along the field direction. Specifically the dyna
ics of the model is defined through the exchange of nea
neighbor particles with a rate

W5min$1,exp~2bDH2EDy!%. ~1!

Here b is an inverse temperaturelike parameter, andDy
5(21,0,1) for a particle attempting to hop along, orthog
nal to, or against the direction of the driving field. The e
1063-651X/2001/64~2!/026105~5!/$20.00 64 0261
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ergy difference between the two configurations after and
fore the particle exchange is denoted byDH.

The model has been studied extensively for nearly t
decades@4#. Monte Carlo simulations suggest that the (T,E)
phase diagram of the model is composed of two phase
high temperature disordered phase in which the particle d
sity is homogeneous, and a low temperature phase in w
the system orders and phase separates into high density
low density regimes. It was found that in this phase the p
ticles evolve towards a striped structure parallel to the dir
tion of the driving field. Numerical studies indicate that
slow coarsening takes place in this state@5–8#. As the mag-
nitude of the driving field is increased, the transition te
perature between the two phases increases and satura
about 1.41TO @9#, whereTO is the Onsager temperature co
responding toE50.

Recent Monte Carlo simulations of this model sugg
that the evolution of the striped phase is rather complex.
a square system the stripes are found not to coarsen in
thermodynamic limit, yielding a multistriped ordered sta
This phase was termed extraordinary or ‘‘stringy’’@10#. On
the other hand systems with large aspect ratio,Ly@Lx , were
found to evolve toward a single stripe phase.

In order to get a better understanding of the nature of
ordered phase of the driven lattice gas model we carry ou
this paper a finite size scaling analysis of the evolution p
cess starting from a fully disordered state. We find that
model evolves via two stages:

~a! an earlystripe formationstage in which stripes are
formed from the initially disordered state; and

~b! a stripe coarseningstage in which the multistripe con
figuration formed in the early stage coarsen by reducing
number of stripes and increasing their average width. A ty
cal evolution of such a system is shown in Fig. 1.

Our studies yield two main results:
~1! The number of stripes that are formed at the end of

initial stripe formation stage strongly depends on the asp
ratio of the system. In particular we find that the number
stripesm scales asm;Lx /Ly

f , with f.0.2. This implies
that for narrow systems (Lx /Ly

f&1) a single stripe is formed
©2001 The American Physical Society05-1
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at the end of the first stage, while for wide systems (Lx /Ly
f

@1) the resulting structure is multistriped.
~2! Simple arguments are presented to show that du

the stripe coarsening stage the average width of the str
grows with time as (t/Ly)

1/3. This behavior is verified by
extensive numerical simulations. Therefore, the coarsen
of the stripes becomes slower as the system size in the
rection of the drive is increased. This implies that in t
thermodynamic limit a multiple striped configuration is
fact stable. We note that similar phenomena of arres
striped configurations have been observed in previous stu
of coarsening of other models with striped structures perp
dicular to the direction of the drive@11#.

The paper is organized as follows: In Sec. II the str
formation stage is discussed. Section III considers the st
coarsening stage. We end with a summary and discussio
the implications of our results to other related works in S
IV.

II. THE STRIPE FORMATION STAGE

The evolution of the driven lattice gas model in the ea
stripe formation stage has received some attention@6–8#.
Numerical simulations indicate that the domain growth p
cess that takes place in this stage is highly anisotropic.
typical domain size in the direction of the drive and t
direction perpendicular to it grow differently. In particular
has been observed@6,7# that the typical domain size paralle
to the drive grows roughly asl y;tw i with w i.1, while the
typical domain size perpendicular to the drive grows roug
as l x;tw', w'.0.2. This behavior is very different from
that of a nondriven system evolving towards equilibrium.
is well known that in such a system, when the dynamics
conserving, as is the case here, the average linear do
sizej grows ast1/3 @12#. The difference in behavior is due t
the inherent anisotropy induced by the drive.

The number of stripes formed in the system at the end
the stripe formation stage can be estimated using the re
described above. For a stripe to form in the system the
of a domain along the direction of the drivel y(t) must be of
the order of the system sizeLy . Sincel y(t);tw i the time
for this to occur,ts scales, asts;Ly

1/w i . At this time the
typical domain size perpendicular to the drive is

l x~ ts!;ts
w';Ly

w' /w i . ~2!

Thus, the number of stripes formed,m, scales as

FIG. 1. A typical evolution of a system of sizeLx5Ly5100
from a random initial condition. Configurations from times~a! 50,
~b! 2000, and~c! 500 000 Monte Carlo sweeps are shown. Hereb
52 andE5`. One can clearly observe the two steps of the coa
ening process described in the text.
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Ly
f

, ~3!

wheref5w' /w i . Using the estimates for the exponentsw'

andw i one hasf.0.2.
Specifically, for a square system, whereLx5Ly[L, Eq. 3

implies m;L12f. Sincef,1 we find that the number o
stripes grows as the system size is increased, and one al
reaches a multistriped state. The stripe density,m/Lx , van-
ishes in the thermodynamic limit.

To verify these results Monte Carlo simulations are p
formed for various system sizes, starting from a random
tial condition. The Monte Carlo procedure we use is sta
dard. At each time step a pair of neighboring sites is cho
randomly and updated according to the rateW given in Eq.
~1!. Throughout the paper we useE5` andb52, for which
the system is ordered. We have checked that the main
tures of this study are unchanged for other values of
parameters as long as the system is in the ordered phase
first verify the growth law ofts with Ly . In order to evaluate
ts , the equal-time correlation of two sites at a distanceLy/2
in the drive direction is measured and averaged over
sample. The timets is estimated by the time at which th
average measured correlation reaches the value of 0.4.
results, averaged over about 100 samples for each sy
size, are shown in Fig. 2~a!. One can see that the behavior
ts with Ly is consistent withw i.1.

The number of stripes initially formed in the system
estimated by performing a Fourier transform of the density
the x direction and locating its first peak at a nonzero wav

-

 

 

 

 

FIG. 2. ~a! The stripe formation timets ~in Monte Carlo sweeps!
plotted againstLy , for systems withLx5100. The behavior is con-
sistent withw i.1. ~b! The number of stripes formed at the end
the first stage in square systems of various sizesL[Lx5Ly , plot-
ted on a log-log scale. The straight line corresponds tom;L0.82.
Here the error estimate for each measurement is of order 1.
5-2
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length. This procedure is repeated 40 times for each sys
size. For simplicity we consider only square systems. In F
2~b! we plot the location of the peak for square systems a
function of L. The fitted exponent for slightly over a decad
of system sizes givesf'0.1860.05 that fits rather well with
the values predicted by the argumentf'0.2. The linear de-
pendence ofm on Lx for nonsquare systems is also verifie
through simulations that are not shown in this paper.

In general, the number of stripes also depends on
magnitude of the driving field and the temperature. One
write, based on Eq. 3,m5ALx /Ly

f , where the amplitude
A(E,b) is introduced. We find that the amplitude is an i
creasing function of both the magnitude of the driving fieldE
and the inverse temperatureb. We note that whenLy

f

>ALx , the number of stripes already at the end of the fi
stage is expected to be one.

III. THE STRIPE COARSENING STAGE

We now turn to the second stage of the ordering proc
namely, the coarsening of the stripes formed in the ea
stage. We present a simple argument suggesting that the
t in which stripes coarsen scales linearly with the system
parallel to the drive,Ly . Moreover, we show that the averag
stripe widthl (t) scales with time as (t/Ly)

1/3. The fact that
the characteristic time associated with the coarsening pro
scales linearly withLy implies that in the thermodynami
limit, where Ly→`, the coarsening time becomes infini
and thus the multistripe structure exists as a thermodyna
cally stable state. Our argument relies on two main featu
of the driven system:~i! the fact that the ordered domain
namely the stripes, are of the size of the system, and (i i ) the
smoothness of the domain walls bounding the stripes. T
last feature has been shown to be a result of the drive@13–
16#. In contrast to the nondriven two-dimensional Isin
model, where the domain walls may be rough, here the d
ing field makes the domain walls smooth.

We proceed by considering a striped state compose
alternating stripes of particles and vacancies with aver
width l . Neighboring stripes of particles interact with ea
other by an exchange of particles. Since the boundarie
the stripes are smooth, the lateral distance that particles
to travel in order to move from one stripe to the other is
the order ofl . To estimate the coarsening time we assu
that within a stripe of vacancies the density of particles
low enough so that the particles may be considered as
interacting. This assumption is qualitatively supported by
configurations observed in simulations~see, e.g, Fig. 1!.
When a particle reaches the boundary it is absorbed in
neighboring particle stripe. Thus the lateral motion of t
particles within a stripe of vacancies can be considered
one-dimensional random walk in thex direction with two
absorbing walls located atx50 andx5l . This problem is
known as the gambler’s ruin problem@17#. The probability
of such a particle to move from 0 tol is given by p(l )
;1/l .

For the width of a stripe to decrease by one lattice sp
ing, it has to loseLy particles. Due to the right-left symmetr
of the problem, the particle currents from one stripe to
02610
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other are balanced on average. Therefore a net transfe
particles from one stripe to another is only due to fluctu
tions in the lateral current. The net excess in the numbe
particles transferred at a time intervalt is then proportional
to ALyp(l )t. For one stripe to shrink and disappearl Ly
particles must be transferred so that

ALyp~ l !t;l Ly . ~4!

Combining this result withp(l );1/l one finds that the
average stripe width in the system grows as

l ~ t !;S t

Ly
D 1/3

. ~5!

This suggests that the coarsening time scales withLy , yield-
ing a stable striped structure in the thermodynamic limit.

The scaling form~5! may be verified numerically by
studying the two point particle-particle correlation functio
To carry out this analysis we note that in an isotropic syst
without a driving field, the coarsening process is charac
ized by a single length scalej(t), which could be the linear
size of the growing domains. In this case the two-po
particle-particle correlation function obeys a scaling fo
@12#

C~r ,t !5gS r

j~ t ! D , ~6!

wherer is the distance between two points. Driven system
on the other hand, are non-isotropic, and correlations al
the drive and perpendicular to it behave differently. The ty
cal length scale perpendicular to the drive is given by E
~5!. Thus we expect the correlation function in thex direction
to be of the form

C'~x,t !5g'S x

~ t/Ly!1/3D . ~7!

The asymptotic behavior ofg'(z) for z→0 is expected to
obey Porod’s law, which states thatg'(z)51/22hz with
some constanth. For z→` one should haveg'(z)→1/4.

We now turn to describe numerical studies that supp
our results. Note that the scaling variable in Eq.~7! involves
three parameters. All three parameters are varied in our
merical studies. This is a demanding computational task,
a good collapse of the data is a strong conformation of
scaling analysis. In these studies an initial striped configu
tion along the drive directiony is considered, and its evolu
tion is simulated. The two point correlation functionC'(x,t)
is then calculated, and is shown to obey the scaling form~7!.
The widths of the stripes in the initial configuration are ra
domly chosen from a Poisson distribution with a mean wid
l 0. The simulations are performed for lattices of three d
ferent sizes: 96038, 800316, and 960332. We consider
several values ofLx to demonstrate that this parameter do
not play an important role in the process. The mean width
the stripes in the initial configurations is taken to bel 054.
The two-point particle-particle correlation functionC'(x,t)
5-3
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is measured and averaged over 110, 75, and 54 simula
for Ly58, 16, and 32, respectively.

The scaling form~7! suggests that data collapse shou
take place with respect to the three variablesx, t, andLy .
This collapse is checked in two steps. First we considerLy
58 and show thatC' is a function ofx/t1/3 as expected.
This is demonstrated in the inset of Fig. 3. Similar results
obtained for the other system sizes as well.

Next, we verify the full scaling form~7!. In Fig. 3 corre-
lation functions for the three different system sizes are p
ted. For each system size the correlation function is ev
ated for arbitrarily chosent and the data is then plotted as
function of the scaling variablex/(t/Ly)

1/3. Again, the qual-
ity of the data collapse supports our main result. Althou
computation time limits us to a relatively small systems,
believe the quality of the data backs our scaling argume

IV. DISCUSSION

The evolution of the driven lattice-gas model was cons
ered starting from a random initial configuration. We ha

FIG. 3. The two-point particle-particle correlation functionC'

is plotted as a function of the scaling variablex/(t/Ly)
1/3, for sys-

tems of size 96038 ~marked by 3), 800316 (s), 960332
(1). The times of measurement are chosen arbitrarily (t51,3,8
3106 Monte Carlo sweeps, respectively!. In the inset,C' as a
function of x/t1/3 is shown for a system of size 96038 and times
t50.2(3), 1(s), 2(1) 3106 Monte Carlo sweeps.
l,

.
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shown, using simple scaling arguments and extensive
merical simulations, that the evolution proceeds via t
stages: an early, stripe formation stage in which stripes of
size of the system are formed, followed by a second stag
which the stripes coarsen. While the first stage laststs
;Ly , the system evolves towards a single stripe configu
tion in the second stage at a time of order;Lx

3Ly . This is a
result of the fact that the typical width of stripes in the coa
ening stage scales with time asl (t);(t/Ly)

1/3. This result
indicates that the coarsening time of multistriped configu
tions scales with the system lengthLy , suggesting that thes
configurations exist as stable states in the thermodyna
limit Ly→`.

Thus, starting from a random initial configuration, th
system evolves to one of two types of states, depending
its aspect ratio. ForLx /Ly

f<1 (f.0.2) the stripe formation
stage leads directly to a single stripe state, while forLx /Ly

f

@1 multistriped states are reached. The coarsening pro
of these states proceeds with a time scale proportional toLy .

These results put in a more general framework previ
studies of this model that considered either the early sta
@6–8# of the evolution or the nature of the steady state@4#. A
recent study of a square system has shown@10# that a mul-
tistriped state~termed ‘‘stringy’’! is reached from a random
initial condition. It was suggested that this state is stable. O
studies indicate that this is indeed the case for an infinit
large system. However we expect a finite system to coar
to a single striped state at a time of the order ofLx

3Ly . The
fact that the steady state of a system with a small asp
ratio, Lx /Ly , was found to be composed of a single stripe
consistent with our scaling picture.

Finally, note that the slow coarsening of the stripes is
direct consequence of stripes spanning the entire sys
This is a result of the existence of the drive, and is expec
to be valid also in higher dimensions. It would be interesti
to study such processes in high-dimensional systems.
note, however, that already in two dimensions the compu
tional effort was considerable.
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